|
|
gslice , gslice_array , indirect_array , mask_array , slice , slice_array , valarray , valarray<bool>
abs , acos , asin , atan , atan2 , cos , cosh , exp , log , log10 , operator!= , operator% , operator& , operator&& , operator> , operator>> , operator>= , operator< , operator<< , operator<= , operator* , operator+ , operator- , operator/ , operator== , operator^ , operator| , operator|| , pow , sin , sinh , sqrt , tan , tanh - defines several classes and template classes that support value-oriented arrays
namespace std { class slice; class gslice; // TEMPLATE CLASSES template<class T> class valarray; template<class T> class slice_array; template<class T> class gslice_array; template<class T> class mask_array; template<class T> class indirect_array; // TEMPLATE FUNCTIONS template<class T> valarray<T> operator*(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> operator*(const valarray<T> x, const T& y); template<class T> valarray<T> operator*(const T& x, const valarray<T>& y); template<class T> valarray<T> operator/(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> operator/(const valarray<T> x, const T& y); template<class T> valarray<T> operator/(const T& x, const valarray<T>& y); template<class T> valarray<T> operator%(const valarray<T>& x, const vararray<T>& y); template<class T> valarray<T> operator%(const valarray<T> x, const T& y); template<class T> valarray<T> operator%(const T& x, const valarray<T>& y); template<class T> valarray<T> operator+(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> operator+(const valarray<T> x, const T& y); template<class T> valarray<T> operator+(const T& x, const valarray<T>& y); template<class T> valarray<T> operator-(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> operator-(const valarray<T> x, const T& y); template<class T> valarray<T> operator-(const T& x, const valarray<T>& y); template<class T> valarray<T> operator^(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> operator^(const valarray<T> x, const T& y); template<class T> valarray<T> operator^(const T& x, const valarray<T>& y); template<class T> valarray<T> operator&(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> operator&(const valarray<T> x, const T& y); template<class T> valarray<T> operator&(const T& x, const valarray<T>& y); template<class T> valarray<T> operator|(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> operator|(const valarray<T> x, const T& y); template<class T> valarray<T> operator|(const T& x, const valarray<T>& y);
template<class T> valarray<T> operator<<(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> operator<<(const valarray<T> x, const T& y); template<class T> valarray<T> operator<<(const T& x, const valarray<T>& y); template<class T> valarray<T> operator>>(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> operator>>(const valarray<T> x, const T& y); template<class T> valarray<T> operator>>(const T& x, const valarray<T>& y); template<class T> valarray<bool> operator&&(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<bool> operator&&(const valarray<T> x, const T& y); template<class T> valarray<bool> operator&&(const T& x, const valarray<T>& y); template<class T> valarray<bool> operator||(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<bool> operator||(const valarray<T> x, const T& y); template<class T> valarray<bool> operator||(const T& x, const valarray<T>& y);
template<class T> valarray<bool> operator==(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<bool> operator==(const valarray<T> x, const T& y); template<class T> valarray<bool> operator==(const T& x, const valarray<T>& y); template<class T> valarray<bool> operator!=(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<bool> operator!=(const valarray<T> x, const T& y); template<class T> valarray<bool> operator!=(const T& x, const valarray<T>& y); template<class T> valarray<bool> operator<(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<bool> operator<(const valarray<T> x, const T& y); template<class T> valarray<bool> operator<(const T& x, const valarray<T>& y); template<class T> valarray<bool> operator>=(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<bool> operator>=(const valarray<T> x, const T& y); template<class T> valarray<bool> operator>=(const T& x, const valarray<T>& y); template<class T> valarray<bool> operator>(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<bool> operator>(const valarray<T> x, const T& y); template<class T> valarray<bool> operator>(const T& x, const valarray<T>& y); template<class T> valarray<bool> operator<=(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<bool> operator<=(const valarray<T> x, const T& y); template<class T> valarray<bool> operator<=(const T& x, const valarray<T>& y);
template<class T> valarray<T> abs(const valarray<T>& x); template<class T> valarray<T> acos(const valarray<T>& x); template<class T> valarray<T> asin(const valarray<T>& x); template<class T> valarray<T> atan(const valarray<T>& x); template<class T> valarray<T> atan2(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> atan2(const valarray<T> x, const T& y); template<class T> valarray<T> atan2(const T& x, const valarray<T>& y); template<class T> valarray<T> cos(const valarray<T>& x); template<class T> valarray<T> cosh(const valarray<T>& x); template<class T> valarray<T> exp(const valarray<T>& x); template<class T> valarray<T> log(const valarray<T>& x); template<class T> valarray&tt;T> log10(const valarray<T>& x); template<class T> valarray<T> pow(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> pow(const valarray<T> x, const T& y); template<class T> valarray<T> pow(const T& x, const valarray<T>& y); template<class T> valarray<T> sin(const valarray<T>& x); template<class T> valarray<T> sinh(const valarray<T>& x); template<class T> valarray<T> sqrt(const valarray<T>& x); template<class T> valarray<T> tan(const valarray<T>& x); template<class T> valarray<T> tanh(const valarray<T>& x); };
Include the standard header <valarray>
to define the template class
valarray
and numerous
supporting template classes and functions. These template classes and functions
are permitted unusual latitude, in the interest of improved performance.
Specifically, any function returning valarray<T>
may return
an object of some other type T'
. In that case, any function that
accepts one or more arguments of type valarray<T>
must have
overloads that accept arbitrary combinations of those arguments,
each replaced with an argument of type T'
. (Put simply,
the only way you can detect such a substitution is to go looking for it.)
template<class T> valarray<T> abs(const valarray<T>& x);
The template function returns an object of class
valarray<T>
, each of whose
elements I
is the absolute value of x[I]
.
template<class T> valarray<T> acos(const valarray<T>& x);
The template function returns an object of class
valarray<T>
, each of whose
elements I
is the arccosine of x[I]
.
template<class T> valarray<T> asin(const valarray<T>& x);
The template function returns an object of class
valarray<T>
, each of whose
elements I
is the arcsine of x[I]
.
template<class T> valarray<T> atan(const valarray<T>& x);
The template function returns an object of class
valarray<T>
, each of whose
elements I
is the arctangent of x[I]
.
template<class T> valarray<T> atan2(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> atan2(const valarray<T> x, const T& y); template<class T> valarray<T> atan2(const T& x, const valarray<T>& y);
The first template function returns an object of class
valarray<T>
, each of whose
elements I
is the arctangent of x[I] / y[I]
.
The second template function stores in element I
the arctangent of x[I] / y
.
The third template function stores in element I
the arctangent of x / y[I]
.
template<class T> valarray<T> cos(const valarray<T>& x);
The template function returns an object of class
valarray<T>
, each of whose
elements I
is the cosine of x[I]
.
template<class T> valarray<T> cosh(const valarray<T>& x);
The template function returns an object of class
valarray<T>
, each of whose
elements I
is the hyperbolic cosine of x[I]
.
template<class T> valarray<T> exp(const valarray<T>& x);
The template function returns an object of class
valarray<T>
, each of whose
elements I
is the exponential of x[I]
.
gslice , start , size , stride
class gslice { public: gslice(); gslice(size_t st, const valarray<size_t> len, const valarray<size_t> str); size_t start() const; const valarray<size_t> size() const; const valarray<size_t> stride() const; };
The class stores the parameters that characterize a
gslice_array
when an
object of class gslice
appears as a subscript
for an object of class
valarray<T>
.
The stored values include:
valarray<size_t>
valarray<size_t>
The two vectors must have the same length.
gslice(); gslice(size_t st, const valarray<size_t> len, const valarray<size_t> str);
The default constructor stores zero for the starting index,
and zero-length vectors for the length and stride vectors.
The second constructor stores st
for the starting index, len
for the length vector,
and str
for the stride vector.
const valarray<size_t> size() const;
The member function returns the stored length vector.
size_t start() const;
The member function returns the stored starting index.
const valarray<size_t> stride() const;
The member function returns the stored stride vector.
template<class T> class gslice_array { public: typedef T value_type; void operator=(const valarray<T> x) const; void operator=(const T& x); void operator*=(const valarray<T> x) const; void operator/=(const valarray<T> x) const; void operator%=(const valarray<T> x) const; void operator+=(const valarray<T> x) const; void operator-=(const valarray<T> x) const; void operator^=(const valarray<T> x) const; void operator&=(const valarray<T> x) const; void operator|=(const valarray<T> x) const; void operator<<=(const valarray<T> x) const; void operator>>=(const valarray<T> x) const; private: void gslice_array(); // not defined void gslice_array( const gslice_array&); // not defined gslice_array& operator=( const gslice_array&); // not defined };
The class describes an object that
stores a reference to an object x
of class
valarray<T>
,
along with an object gs
of class
gslice
which
describes the sequence of elements to select from the
valarray<T>
object.
You construct a gslice_array<T>
object only
by writing an expression of the form
x[gs]
.
The member functions of class gslice_array
then
behave like the corresponding function signatures defined
for valarray<T>
, except that only the sequence
of selected elements is affected.
The sequence is determined as follows. For a length vector
gs.size()
of length N
, construct the index
vector valarray<size_t> idx(0, N)
. This
designates the initial element of the sequence, whose index
k
within x
is given by the mapping:
k = start; for (size_t i = 0; i < gs.size()[i]; ++i) k += idx[i] * gs.stride()[i];
The successor to an index vector value is given by:
for (size_t i = N; 0 < i--; ) if (++idx[i] < gs.size()[i]) break; else idx[i] = 0;
For example:
const size_t lv[] = {2, 3}; const size_t dv[] = {7, 2}; const valarray<size_t> len(lv, 2), str(dv, 2); // x[gslice(3, len, str)] selects elements with // indices 3, 5, 7, 10, 12, 14
template<class T> class indirect_array { public: typedef T value_type; void operator=(const valarray<T> x) const; void operator=(const T& x); void operator*=(const valarray<T> x) const; void operator/=(const valarray<T> x) const; void operator%=(const valarray<T> x) const; void operator+=(const valarray<T> x) const; void operator-=(const valarray<T> x) const; void operator^=(const valarray<T> x) const; void operator&=(const valarray<T> x) const; void operator|=(const valarray<T> x) const; void operator<<=(const valarray<T> x) const; void operator>>=(const valarray<T> x) const; private: private: void indirect_array(); // not defined void indirect_array( const indirect_array&); // not defined indirect_array& operator=( const indirect_array&); // not defined };
The class describes an object that
stores a reference to an object x
of class
valarray<T>
,
along with an object xa
of class
valarray<size_t>
which
describes the sequence of elements to select from the
valarray<T>
object.
You construct an indirect_array<T>
object only
by writing an expression of the form
x[xa]
.
The member functions of class indirect_array
then
behave like the corresponding function signatures defined
for valarray<T>
, except that only the sequence
of selected elements is affected.
The sequence consists of
xa.size()
elements, where element i
becomes the index
xa[i]
within x
. For example:
const size_t vi[] = {7, 5, 2, 3, 8}; // x[valarray<size_t>(vi, 5)] selects elements with // indices 7, 5, 2, 3, 8
template<class T> valarray<T> log(const valarray<T>& x);
The template function returns an object of class
valarray<T>
, each of whose
elements I
is the natural logarithm of x[I]
.
template<class T> valarray<T> log10(const valarray<T>& x);
The template function returns an object of class
valarray<T>
, each of whose
elements I
is the base-10 logarithm of x[I]
.
template<class T> class mask_array { public: typedef T value_type; void operator=(const valarray<T> x) const; void operator=(const T& x); void operator*=(const valarray<T> x) const; void operator/=(const valarray<T> x) const; void operator%=(const valarray<T> x) const; void operator+=(const valarray<T> x) const; void operator-=(const valarray<T> x) const; void operator^=(const valarray<T> x) const; void operator&=(const valarray<T> x) const; void operator|=(const valarray<T> x) const; void operator<<=(const valarray<T> x) const; void operator>>=(const valarray<T> x) const; private: void mask_array(); // not defined void mask_array( const mask_array&); // not defined gslice_array& operator=( const mask_array&); // not defined };
The class describes an object that
stores a reference to an object x
of class
valarray<T>
,
along with an object ba
of class
valarray<bool>
which
describes the sequence of elements to select from the
valarray<T>
object.
You construct a mask_array<T>
object only
by writing an expression of the form
x[xa]
.
The member functions of class mask_array
then
behave like the corresponding function signatures defined
for valarray<T>
, except that only the sequence
of selected elements is affected.
The sequence consists of at most
ba.size()
elements. An element j
is included only if ba[j]
is true. Thus, there are as many elements in the sequence as there are
true elements in ba
.
If i
is the index of the lowest true element
in ba
, then x[i]
is element zero in the
selected sequence. For example:
const bool vb[] = {false, false, true, true, false, true}; // x[valarray<bool>(vb, 56] selects elements with // indices 2, 3, 5
template<class T> valarray<bool> operator!=(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<bool> operator!=(const valarray<T> x, const T& y); template<class T> valarray<bool> operator!=(const T& x, const valarray<T>& y);
The first template operator returns an object of class
valarray<bool>
,
each of whose
elements I
is x[I] != y[I]
.
The second template operator stores in element I
x[I] != y
.
The third template operator stores in element I
x != y[I]
.
template<class T> valarray<T> operator%(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> operator%(const valarray<T> x, const T& y); template<class T> valarray<T> operator%(const T& x, const valarray<T>& y);
The first template operator returns an object of class
valarray<T>
,
each of whose
elements I
is x[I] % y[I]
.
The second template operator stores in element I
x[I] % y
.
The third template operator stores in element I
x % y[I]
.
template<class T> valarray<T> operator&(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> operator&(const valarray<T> x, const T& y); template<class T> valarray<T> operator&(const T& x, const valarray<T>& y);
The first template operator returns an object of class
valarray<T>
,
each of whose
elements I
is x[I] & y[I]
.
The second template operator stores in element I
x[I] & y
.
The third template operator stores in element I
x & y[I]
.
template<class T> valarray<bool> operator&&(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<bool> operator&&(const valarray<T> x, const T& y); template<class T> valarray<bool> operator&&(const T& x, const valarray<T>& y);
The first template operator returns an object of class
valarray<bool>
,
each of whose
elements I
is x[I] && y[I]
.
The second template operator stores in element I
x[I] && y
.
The third template operator stores in element I
x && y[I]
.
template<class T> valarray<bool> operator>(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<bool> operator>(const valarray<T> x, const T& y); template<class T> valarray<bool> operator>(const T& x, const valarray<T>& y);
The first template operator returns an object of class
valarray<bool>
,
each of whose
elements I
is x[I] > y[I]
.
The second template operator stores in element I
x[I] > y
.
The third template operator stores in element I
x > y[I]
.
template<class T> valarray<T> operator>>(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> operator>>(const valarray<T> x, const T& y); template<class T> valarray<T> operator>>(const T& x, const valarray<T>& y);
The first template operator returns an object of class
valarray<T>
,
each of whose
elements I
is x[I] >> y[I]
.
The second template operator stores in element I
x[I] >> y
.
The third template operator stores in element I
x >> y[I]
.
template<class T> valarray<bool> operator>=(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<bool> operator>=(const valarray<T> x, const T& y); template<class T> valarray<bool> operator>=(const T& x, const valarray<T>& y);
The first template operator returns an object of class
valarray<bool>
,
each of whose
elements I
is x[I] >= y[I]
.
The second template operator stores in element I
x[I] >= y
.
The third template operator stores in element I
x >= y[I]
.
template<class T> valarray<bool> operator<(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<bool> operator<(const valarray<T> x, const T& y); template<class T> valarray<bool> operator<(const T& x, const valarray<T>& y);
The first template operator returns an object of class
valarray<bool>
,
each of whose
elements I
is x[I] < y[I]
.
The second template operator stores in element I
x[I] < y
.
The third template operator stores in element I
x < y[I]
.
template<class T> valarray<T> operator<<(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> operator<<(const valarray<T> x, const T& y); template<class T> valarray<T> operator<<(const T& x, const valarray<T>& y);
The first template operator returns an object of class
valarray<T>
,
each of whose
elements I
is x[I] << y[I]
.
The second template operator stores in element I
x[I] << y
.
The third template operator stores in element I
x << y[I]
.
template<class T> valarray<bool> operator<=(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<bool> operator<=(const valarray<T> x, const T& y); template<class T> valarray<bool> operator<=(const T& x, const valarray<T>& y);
The first template operator retrrns an object of class
valarray<bool>
,
each of whose
elements I
is x[I] <= y[I]
.
The second template operator stores in element I
x[I] <= y
.
The third template operator stores in element I
x <= y[I]
.
template<class T> valarray<T> operator*(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> operator*(const valarray<T> x, const T& y); template<class T> valarray<T> operator*(const T& x, const valarray<T>& y);
The first template operator returns an object of class
valarray<T>
,
each of whose
elements I
is x[I] * y[I]
.
The second template operator stores in element I
x[I] * y
.
The third template operator stores in element I
x * y[I]
.
template<class T> valarray<T> operator+(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> operator+(const valarray<T> x, const T& y); template<class T> valarray<T> operator+(const T& x, const valarray<T>& y);
The first template operator returns an object of class
valarray<T>
,
each of whose
elements I
is x[I] + y[I]
.
The second template operator stores in element I
x[I] + y
.
The third template operator stores in element I
x + y[I]
.
template<class T> valarray<T> operator-(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> operator-(const valarray<T> x, const T& y); template<class T> valarray<T> operator-(const T& x, const valarray<T>& y);
The first template operator returns an object of class
valarray<T>
,
each of whose
elements I
is x[I] - y[I]
.
The second template operator stores in element I
x[I] - y
.
The third template operator stores in element I
x - y[I]
.
template<class T> valarray<T> operator/(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> operator/(const valarray<T> x, const T& y); template<class T> valarray<T> operator/(const T& x, const valarray<T>& y);
The first template operator returns an object of class
valarray<T>
,
each of whose
elements I
is x[I] / y[I]
.
The second template operator stores in element I
x[I] / y
.
The third template operator stores in element I
x / y[I]
.
template<class T> valarray<bool> operator==(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<bool> operator==(const valarray<T> x, const T& y); template<class T> valarray<bool> operator==(const T& x const valarray<T>& y);
The first template operator returns an object of class
valarray<bool>
,
each of whose
elements I
is x[I] == y[I]
.
The second template operator stores in element I
x[I] == y
.
The third template operator stores in element I
x == y[I]
.
template<class T> valarray<T> operator^(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> operator^(const valarray<T> x, const T& y); template<class T> valarray<T> operator^(const T& x, const valarray<T>& y);
The first template operator returns an object of class
valarray<T>
,
each of whose
elements I
is x[I] ^ y[I]
.
The second template operator stores in element I
x[I] ^ y
.
The third template operator stores in element I
x ^ y[I]
.
template<class T> valarray<T> operator|(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> operator|(const valarray<T> x, const T& y); template<class T> valarray<T> operator|(const T& x, const valarray<T>& y);
The first template operator returns an object of class
valarray<T>
,
each of whose
elements I
is x[I] | y[I]
.
The second template operator stores in element I
x[I] | y
.
The third template operator stores in element I
x | y[I]
.
template<class T> valarray<bool> operator||(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<bool> operator||(const valarray<T> x, const T& y); template<class T> valarray<bool> operator||(const T& x, const valarray<T>& y);
The first template operator returns an object of class
valarray<bool>
,
each of whose
elements I
is x[I] || y[I]
.
The second template operator stores in element I
x[I] || y
.
The third template operator stores in element I
x || y[I]
.
template<class T> valarray<T> pow(const valarray<T>& x, const valarray<T>& y); template<class T> valarray<T> pow(const valarray<T> x, const T& y); template<class T> valarray<T> pow(const T& x, const valarray<T>& y);
The first template function returns an object of class
valarray<T>
, each of whose
elements I
is x[I]
raised to the
y[I]
power.
The second template function stores in element I
x[I]
raised to the y
power.
The third template function stores in element I
x
raised to the y[I]
power.
template<class T> valarray<T> sin(const valarray<T>& x);
The template function returns an object of class
valarray<T>
, each of whose
elements I
is the sine of x[I]
.
template<class T> valarray<T> sinh(const valarray<T>& x);
The template function returns an object of class
valarray<T>
, each of whose
elements I
is the hyperbolic sine of x[I]
.
class slice { public: slice(); slice(size_t st, size_t len, size_t str); size_t start() const; size_t size() const; size_t stride() const; };
The class stores the parameters that characterize a
slice_array
when an
object of class slice
appears as a subscript
for an object of class
valarray<T>
.
The stored values include:
slice(); slice(size_t st, const valarray<size_t> len, const valarray<size_t> str);
The default constructor stores zeros for the starting index,
total length, and stride. The second constructor stores st
for the starting index, len
for the total length,
and str
for the stride.
size_t size() const;
The member function returns the stored total length.
size_t start() const;
The member function returns the stored starting index.
size_t stride() const;
The member function returns the stored stride.
template<class T> class slice_array { public: typedef T value_type; void operator=(const valarray<T> x) const; void operator=(const T& x); void operator*=(const valarray<T> x) const; void operator/=(const valarray<T> x) const; void operator%=(const valarray<T> x) const; void operator+=(const valarray<T> x) const; void operator-=(const valarray<T> x) const; void operator^=(const valarray<T> x) const; void operator&=(const valarray<T> x) const; void operator|=(const valarray<T> x) const; void operator<<=(const valarray<T> x) const; void operator>>=(const valarray<T> x) const; private: void slice_array(); // not defined void slice_array( const slice_array&); // not defined slice_array& operator=( const slice_array&); // not defined };
The class describes an object that
stores a reference to an object x
of class
valarray<T>
,
along with an object sl
of class
slice
which
describes the sequence of elements to select from the
valarray<T>
object.
You construct a slice_array<T>
object only
by writing an expression of the form
x[sl]
.
The member functions of class slice_array
then
behave like the corresponding function signatures defined
for valarray<T>
, except that only the sequence
of selected elements is affected.
The sequence consists of
sl.size()
elements, where element i
becomes the index
sl.start() + i *
sl.stride()
within x
.
For example:
// x[slice(2, 5, 3)] selects elements with // indices 2, 5, 8, 11, 14
template<class T> valarray<T> sqrt(const valarray<T>& x);
The template function returns an object of class
valarray<T>
, each of whose
elements I
is the square root of x[I]
.
template<class T> valarray<T> tan(const valarray<T>& x);
The template function returns an object of class
valarray<T>
, each of whose
elements I
is the tangent of x[I]
.
template<class T> valarray<T> tanh(const valarray<T>& x);
The template function returns an object of class
valarray<T>
, each of whose
elements I
is the hyperbolic tangent of x[I]
.
apply , cshift , max , min , operator T * , operator! , operator%= , operator&= , operator>>= , operator<<= , operator*= , operator+ , operator+= , operator- , operator-= , operator/= , operator= , operator[] , operator^= , operator|= , operator~ , resize , shift , size , sum , valarray , value_type
template<class T> class valarray { public: typedef T value_type; valarray(); explicit valarray(size_t n); valarray(const T& val, size_t n)); valarray(const T *p, size_t n); valarray(const slice_array<T>& sa); valarray(const gslice_array<T>& ga); valarray(const mask_array<T>& ma); valarray(const indirect_array<T>& ia); valarray<T>& operator=(const valarray<T>& va); valarray<T>& operator=(const T& x); valarray<T>& operator=(const slice_array<T>& sa); valarray<T>& operator=(const gslice_array<T>& ga); valarray<T>& operator=(const mask_array<T>& ma); valarray<T>& operator=(const indirect_array<T>& ia); T operator[](size_t n) const; T& operator[](size_t n); valarray<T> operator[](slice sa) const; slice_array<T> operator[](slice sa); valarray<T> operator[](const gslice& ga) const; gslice_array<T> operator[](const gslice& ga); valarray<T> operator[](const valarray<bool>& ba) const; mask_array<T> operator[](const valarray<bool>& ba); valarray<T> operator[](const valarray<size_t>& xa) const; indirect_array<T> operator[](const valarray<size_t>& xa); valarray<T> operator+(); valarray<T> operator-(); valarray<T> operator~(); valarray<bool> operator!(); valarray<T>& operator*=(const valarray<T>& x); valarray<T>& operator*=(const T& x); valarray<T>& operator/=(const valarray<T>& x); valarray<T>& operator/=(const T& x); valarray<T>& operator%=(const valarray<T>& x); valarray<T>& operator%=(const T& x); valarray<T>& operator+=(const valarray<T>& x); valarray<T>& operator+=(const T& x); valarray<T>& operator-=(const valarray<T>& x); valarray<T>& operator-=(const T& x); valarray<T>& operator^=(const valarray<T>& x); valarray<T>& operator^=(const T& x); valarray<T>& operator&=(const valarray<T>& x); valarray<T>& operator&=(const T& x); valarray<T>& operator|=(const valarray<T>& x); valarray<T>& operator|=(const T& x); valarray<T>& operator<<=(const valarray<T>& x); valarray<T>& operator<<=(const T& x); valarray<T>& operator>>=(const valarray<T>& x); valarray<T>& operator>>=(const T& x); operator T *(); operator const T *() const; size_t size() const; T sum() const; T max() const; T min() const; valarray<T> shift(int n) const; valarray<T> cshift(int n) const; valarray<T> apply(T fn(T)) const; valarray<T> apply(T fn(const T&)) const; void resize(size_t n); void resize(size_t n, const T& c); };
The template class describes an object that controls a
varying-length sequence of elements of type T
.
The sequence is stored as an array of T
.
It differs from template class
vector
in two important
ways:
valarray<T>
objects of the same
type and length, such as x = cos(y) + sin(z)
.valarray<T>
object, by overloading
operator[]
.An object of class T
:
In particular, no subtle differences may exist between copy construction
and default construction followed by assignment. And none of the operations
on objects of class T
may throw exceptions.
valarray<T> apply(T fn(T)) const; valarray<T> apply(T fn(const T&)) const;
The member function returns an object of class
valarray<T>
, of length
size()
, each of whose
elements I
is fn((*this)[I])
.
valarray<T> cshift(int n) const;
The member function returns an object of class
valarray<T>
, of length
size()
, each of whose
elements I
is (*this)[(I + n) % size()]
.
Thus, if element zero is taken as the leftmost element, a positive
value of n
shifts the elements circularly left n
places.
T max() const;
The member function returns the value of the largest element
of *this
, which must have nonzero length.
If the length is greater than one, it compares values
by applying operator<
between pairs of corresponding elements of class T
.
T min() const;
The member function returns the value of the smallest element
of *this
, which must have nonzero length.
If the length is greater than one, it compares values
by applying operator<
between pairs of elements of class T
.
operator T *(); operator const T *() const;
Both member functions return a pointer to the first element of the controlled array, which must have at least one element.
valarray<bool> operator!();
The member operator returns an object of class
valarray<bool>
, of length
size()
, each of whose
elements I
is !(*this)
.
valarray<T>& operator%=(const valarray<T>& x); valarray<T>& operator%=(const T& x);
The member operator replaces each element I
of *this
with (*this)[I] % x[I]
.
It returns *this
.
valarray<T>& operator&=(const valarray<T>& x); valarray<T>& operator&=(const T& x);
The member operator replaces each element I
of *this
with (*this)[I] & x[I]
.
It returns *this
.
valarray<T>& operator>>=(const valarray<T>& x); valarray<T>& operator>>=(const T& x);
The member operator replaces each element I
of *this
with (*this)[I] >> x[I]
.
It returns *this
.
valarray<T>& operator<<=(const valarray<T>& x); valarray<T>& operator<<=(const T& x);
The member operator replaces each element I
of *this
with (*this)[I] << x[I]
.
It returns *this
.
valarray<T>& operator*=(const valarray<T>& x); valarray<T>& operator*=(const T& x);
The member operator replaces each element I
of *this
with (*this)[I] * x[I]
.
It returns *this
.
valarray<T> operator+();
The member operator returns an object of class
valarray<T>
, of length
size()
, each of whose
elements I
is (*this)[I]
.
valarray<T>& operator+=(const valarray<T>& x); valarray<T>& operator+=(const T& x);
The member operator replaces each element I
of *this
with (*this)[I] + x[I]
.
It returns *this
.
valarray<T> operator-();
The member operator returns an object of class
valarray<T>
, of length
size()
, each of whose
elements I
is -(*this)[I]
.
valarray<T>& operator-=(const valarray<T>& x); valarray<T>& operator-=(const T& x);
The member operator replaces each element I
of *this
with (*this)[I] - x[I]
.
It returns *this
.
valarray<T>& operator/=(const valarray<T>& x); valarray<T>& operator/=(const T& x);
The member operator replaces each element I
of *this
with (*this)[I] / x[I]
.
It returns *this
.
valarray<T>& operator=(const valarray<T>& va); valarray<T>& operator=(const T& x); valarray<T>& operator=(const slice_array<T>& sa); valarray<T>& operator=(const gslice_array<T>& ga); valarray<T>& operator=(const mask_array<T>& ma); valarray<T>& operator=(const indirect_array<T>& ia);
The first member operator replaces the controlled sequence with
a copy of the sequence controlled by va
.
The second member operator replaces each element of the controlled
sequence with a copy of x
.
The remaining member operators replace those elements of the controlled
sequence selected by their arguments, which are generated only by
operator[]
.
If the value of a member in the replacement controlled sequence
depends on a member in the initial controlled sequence, the result
is undefined.
If the length of the controlled sequence changes, the result is generally undefined. In this
in this implementation, however, the effect is merely to invalidate any pointers or references to elements in the controlled sequence.
T& operator[](size_t n); slice_array<T> operator[](slice sa); gslice_array<T> operator[](const gslice& ga); mask_array<T> operator[](const valarray<bool>& ba); indirect_array<T> operator[](const valarray<size_t>& xa); T operator[](size_t n) const; valarray<T> operator[](slice sa) const; valarray<T> operator[](const gslice& ga) const; valarray<T> operator[](const valarray<bool>& ba) const; valarray<T> operator[](const valarray<size_t>& xa) const;
The member operator is overloaded to provide several ways to select
sequences of elements from among those controlled by *this
.
The first group of five member operators work in conjunction with
various overloads of
operator=
(and other assigning operators) to allow selective replacement
(slicing) of the controlled sequence. The selected elements must
exist.
The first member operator selects element n
.
For example:
valarray<char> v0("abcdefghijklmnop", 16); v0[3] = 'A'; // v0 == valarray<char>("abcAefghijklmnop", 16)
The second member operator selects those elements of the controlled
sequence designated by sa
. For example:
valarray<char> v0("abcdefghijklmnop", 16); valarray<char> v1("ABCDE", 5); v0[slice(2, 5, 3)] = v1; // v0 == valarray<char>("abAdeBghCjkDmnEp", 16)
The third member operator selects those elements of the controlled
sequence designated by ga
. For example:
valarray<char> v0("abcdefghijklmnop", 16); valarray<char> v1("ABCDEF", 6); const size_t lv[] = {2, 3}; const size_t dv[] = {7, 2}; const valarray<size_t> len(lv, 2), str(dv, 2); v0[gslice(3, len, str)] = v1; // v0 == valarray<char>("abcAeBgCijDlEnFp", 16)
The fourth member operator selects those elements of the controlled
sequence designated by ba
. For example:
valarray<char> v0("abcdefghijklmnop", 16); valarray<char> v1("ABC", 3); const bool vb[] = {false, false, true, true, false, true}; v0[valarray<bool>(vb, 6)] = v1; // v0 == valarray<char>("abABeCghijklmnop", 16)
The fifth member operator selects those elements of the controlled
sequence designated by ia
. For example:
valarray<char> v0("abcdefghijklmnop", 16); valarray<char> v1("ABCDE", 5); const size_t vi[] = {7, 5, 2, 3, 8}; v0[valarray<size_t>(vi, 5)] = v1; // v0 == valarray<char>("abCDeBgAEjklmnop", 16)
The second group of five member operators each construct an object that represents the value(s) selected. The selected elements must exist.
The sixth member operator returns the value of element n
.
For example:
valarray<char> v0("abcdefghijklmnop", 16); // v0[3] returns 'd'
The seventh member operator returns an object of class
valarray<T>
containing those elements of the controlled
sequence designated by sa
. For example:
valarray<char> v0("abcdefghijklmnop", 16); // v0[slice(2, 5, 3)] returns valarray<char>("cfilo", 5)
The eighth member operator selects those elements of the controlled
sequence designated by ga
. For example:
valarray<char> v0("abcdefghijklmnop", 16); const size_t lv[] = {2, 3}; const size_t dv[] = {7, 2}; const valarray<size_t> len(lv, 2), str(dv, 2); // v0[gslice(3, len, str)] returns // valarray<char>("dfhkmo", 6)
The ninth member operator selects those elements of the controlled
sequence designated by ba
. For example:
valarray<char> v0("abcdefghijklmnop", 16); const bool vb[] = {false, false, true, true, false, true}; // v0[valarray<bool>(vb, 6)] returns // valarray<char>("cdf", 3)
The last member operator selects those elements of the controlled
sequence designated by ia
. For example:
valarray<char> v0("abcdefghijklmnop", 16); const size_t vi[] = {7, 5, 2, 3, 8}; // v0[valarray<size_t>(vi, 5)] returns // valarray<char>("hfcdi", 5)
valarray<T>& operator^=(const valarray<T>& x); valarray<T>& operator^=(const T& x);
The member operator replaces each element I
of *this
with (*this)[I] ^ x[I]
.
It returns *this
.
valarray<T>& operator|=(const valarray<T>& x); valarray<T>& operator|=(const T& x);
The member operator replaces each element I
of *this
with (*this)[I] | x[I]
.
It returns *this
.
valarray<T> operator~();
The member operator returns an object of class
valarray<T>
, of length
size()
, each of whose
elements I
is ~(*this)[I]
.
void resize(size_t n); void resize(size_t n, const T& c);
The member functions both ensure that
size()
henceforth
returns n
. If it must make the controlled sequence longer,
the first member function appends elements with value T()
,
while the second member function appends elements with value c
.
To make the controlled sequence shorter, both member functions remove and
delete elements with subscripts in the range
[n, size())
.
Any pointers or references to
elements in the controlled sequence are invalidated.
valarray<T> shift(int n) const;
The member function returns an object of class
valarray<T>
, of length
size()
, each of whose
elements I
is either (*this)[I + n]
,
if I + n
is a valid subscript, or T()
.
Thus, if element zero is taken as the leftmost element, a positive
value of n
shifts the elements left n
places, with zero fill.
size_t size() const;
The member function returns the number of elements in the array.
T sum() const;
The member function returns the sum of all elements of *this
,
which must have nonzero length. If the length is greater than one,
it adds values to the sum by applying
operator+=
between pairs of elements
of class T
.
valarray(); explicit valarray(size_t n); valarray(const T& val, size_t n)); valarray(const T *p, size_t n); valarray(const slice_array<T>& sa); valarray(const gslice_array<T>& ga); valarray(const mask_array<T>& ma); valarray(const indirect_array<T>& ia);
The first (default) constructor initializes the object to an empty
array. The next three constructors each initialize the object to an array
of n
elements as follows:
explicit valarray(size_t n)
,
each element is initialized with the default constructor.valarray(const T& val, size_t n))
,
each element is initialized with val
.valarray(const T *p, size_t n)
,
the element at position I
is initialized with
p[I]
.Each of the remaining constructors initializes the object to a
valarray<T>
object determined by the argument.
typedef T value_type;
The type is a synonym for the template parameter T
.
class valarray<bool>
The type is a specialization of template class
valarray
, for elements
of type bool
.
Copyright © 1992-1996 by P.J. Plauger. Portions derived from work copyright © 1994 by Hewlett-Packard Company. All rights reserved.