DOC HOME SITE MAP MAN PAGES GNU INFO SEARCH PRINT BOOK
 

EVP_des_ede(3)





NAME

       EVP_CIPHER_CTX_init, EVP_EncryptInit_ex, EVP_EncryptUpdate,
       EVP_EncryptFinal_ex, EVP_DecryptInit_ex, EVP_DecryptUpdate,
       EVP_DecryptFinal_ex, EVP_CipherInit_ex, EVP_CipherUpdate, EVP_CipherFi-
       nal_ex, EVP_CIPHER_CTX_set_key_length, EVP_CIPHER_CTX_ctrl,
       EVP_CIPHER_CTX_cleanup, EVP_EncryptInit, EVP_EncryptFinal, EVP_Decryp-
       tInit, EVP_DecryptFinal, EVP_CipherInit, EVP_CipherFinal,
       EVP_get_cipherbyname, EVP_get_cipherbynid, EVP_get_cipherbyobj,
       EVP_CIPHER_nid, EVP_CIPHER_block_size, EVP_CIPHER_key_length,
       EVP_CIPHER_iv_length, EVP_CIPHER_flags, EVP_CIPHER_mode,
       EVP_CIPHER_type, EVP_CIPHER_CTX_cipher, EVP_CIPHER_CTX_nid,
       EVP_CIPHER_CTX_block_size, EVP_CIPHER_CTX_key_length,
       EVP_CIPHER_CTX_iv_length, EVP_CIPHER_CTX_get_app_data,
       EVP_CIPHER_CTX_set_app_data, EVP_CIPHER_CTX_type, EVP_CIPHER_CTX_flags,
       EVP_CIPHER_CTX_mode, EVP_CIPHER_param_to_asn1,
       EVP_CIPHER_asn1_to_param, EVP_CIPHER_CTX_set_padding,  EVP_enc_null,
       EVP_des_cbc, EVP_des_ecb, EVP_des_cfb, EVP_des_ofb, EVP_des_ede_cbc,
       EVP_des_ede, EVP_des_ede_ofb, EVP_des_ede_cfb, EVP_des_ede3_cbc,
       EVP_des_ede3, EVP_des_ede3_ofb, EVP_des_ede3_cfb, EVP_desx_cbc,
       EVP_rc4, EVP_rc4_40, EVP_rc4_hmac_md5, EVP_idea_cbc, EVP_idea_ecb,
       EVP_idea_cfb, EVP_idea_ofb, EVP_rc2_cbc, EVP_rc2_ecb, EVP_rc2_cfb,
       EVP_rc2_ofb, EVP_rc2_40_cbc, EVP_rc2_64_cbc, EVP_bf_cbc, EVP_bf_ecb,
       EVP_bf_cfb, EVP_bf_ofb, EVP_cast5_cbc, EVP_cast5_ecb, EVP_cast5_cfb,
       EVP_cast5_ofb, EVP_rc5_32_12_16_cbc, EVP_rc5_32_12_16_ecb,
       EVP_rc5_32_12_16_cfb, EVP_rc5_32_12_16_ofb, EVP_aes_128_gcm,
       EVP_aes_192_gcm, EVP_aes_256_gcm, EVP_aes_128_ccm, EVP_aes_192_ccm,
       EVP_aes_256_ccm, EVP_aes_128_cbc_hmac_sha1, EVP_aes_256_cbc_hmac_sha1,
       EVP_aes_128_cbc_hmac_sha256, EVP_aes_256_cbc_hmac_sha256 - EVP cipher
       routines


SYNOPSIS

        #include <openssl/evp.h>

        void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *a);

        int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
                ENGINE *impl, const unsigned char *key, const unsigned char *iv);
        int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
                int *outl, const unsigned char *in, int inl);
        int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out,
                int *outl);

        int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
                ENGINE *impl, const unsigned char *key, const unsigned char *iv);
        int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
                int *outl, const unsigned char *in, int inl);
        int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
                int *outl);

        int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
                ENGINE *impl, const unsigned char *key, const unsigned char *iv, int enc);
        int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
                int *outl, const unsigned char *in, int inl);
        int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
                int *outl);

        int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
                const unsigned char *key, const unsigned char *iv);
        int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
                int *outl);

        int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
                const unsigned char *key, const unsigned char *iv);
        int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
                int *outl);

        int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
                const unsigned char *key, const unsigned char *iv, int enc);
        int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
                int *outl);

        int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *x, int padding);
        int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *x, int keylen);
        int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr);
        int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *a);

        const EVP_CIPHER *EVP_get_cipherbyname(const char *name);
        #define EVP_get_cipherbynid(a) EVP_get_cipherbyname(OBJ_nid2sn(a))
        #define EVP_get_cipherbyobj(a) EVP_get_cipherbynid(OBJ_obj2nid(a))

        #define EVP_CIPHER_nid(e)              ((e)->nid)
        #define EVP_CIPHER_block_size(e)       ((e)->block_size)
        #define EVP_CIPHER_key_length(e)       ((e)->key_len)
        #define EVP_CIPHER_iv_length(e)                ((e)->iv_len)
        #define EVP_CIPHER_flags(e)            ((e)->flags)
        #define EVP_CIPHER_mode(e)             ((e)->flags) & EVP_CIPH_MODE)
        int EVP_CIPHER_type(const EVP_CIPHER *ctx);

        #define EVP_CIPHER_CTX_cipher(e)       ((e)->cipher)
        #define EVP_CIPHER_CTX_nid(e)          ((e)->cipher->nid)
        #define EVP_CIPHER_CTX_block_size(e)   ((e)->cipher->block_size)
        #define EVP_CIPHER_CTX_key_length(e)   ((e)->key_len)
        #define EVP_CIPHER_CTX_iv_length(e)    ((e)->cipher->iv_len)
        #define EVP_CIPHER_CTX_get_app_data(e) ((e)->app_data)
        #define EVP_CIPHER_CTX_set_app_data(e,d) ((e)->app_data=(char *)(d))
        #define EVP_CIPHER_CTX_type(c)         EVP_CIPHER_type(EVP_CIPHER_CTX_cipher(c))
        #define EVP_CIPHER_CTX_flags(e)                ((e)->cipher->flags)
        #define EVP_CIPHER_CTX_mode(e)         ((e)->cipher->flags & EVP_CIPH_MODE)

        int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
        int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type);


DESCRIPTION

       The EVP cipher routines are a high level interface to certain symmetric
       ciphers.

       EVP_CIPHER_CTX_init() initializes cipher contex ctx.

       EVP_EncryptInit_ex() sets up cipher context ctx for encryption with
       cipher type from ENGINE impl. ctx must be initialized before calling
       this function. type is normally supplied by a function such as
       EVP_aes_256_cbc(). If impl is NULL then the default implementation is
       used. key is the symmetric key to use and iv is the IV to use (if nec-
       essary), the actual number of bytes used for the key and IV depends on
       the cipher. It is possible to set all parameters to NULL except type in
       an initial call and supply the remaining parameters in subsequent
       calls, all of which have type set to NULL. This is done when the
       default cipher parameters are not appropriate.

       EVP_EncryptUpdate() encrypts inl bytes from the buffer in and writes
       the encrypted version to out. This function can be called multiple
       times to encrypt successive blocks of data. The amount of data written
       depends on the block alignment of the encrypted data: as a result the
       amount of data written may be anything from zero bytes to (inl +
       cipher_block_size - 1) so out should contain sufficient room. The
       actual number of bytes written is placed in outl.

       If padding is enabled (the default) then EVP_EncryptFinal_ex() encrypts
       the "final" data, that is any data that remains in a partial block.  It
       uses standard block padding (aka PKCS padding). The encrypted final
       data is written to out which should have sufficient space for one
       cipher block. The number of bytes written is placed in outl. After this
       function is called the encryption operation is finished and no further
       calls to EVP_EncryptUpdate() should be made.

       If padding is disabled then EVP_EncryptFinal_ex() will not encrypt any
       more data and it will return an error if any data remains in a partial
       block: that is if the total data length is not a multiple of the block
       size.

       EVP_DecryptInit_ex(), EVP_DecryptUpdate() and EVP_DecryptFinal_ex() are
       the corresponding decryption operations. EVP_DecryptFinal() will return
       an error code if padding is enabled and the final block is not cor-
       rectly formatted. The parameters and restrictions are identical to the
       encryption operations except that if padding is enabled the decrypted
       data buffer out passed to EVP_DecryptUpdate() should have sufficient
       room for (inl + cipher_block_size) bytes unless the cipher block size
       is 1 in which case inl bytes is sufficient.

       EVP_CipherInit_ex(), EVP_CipherUpdate() and EVP_CipherFinal_ex() are
       functions that can be used for decryption or encryption. The operation
       performed depends on the value of the enc parameter. It should be set
       to 1 for encryption, 0 for decryption and -1 to leave the value
       unchanged (the actual value of 'enc' being supplied in a previous
       call).

       EVP_CIPHER_CTX_cleanup() clears all information from a cipher context
       and free up any allocated memory associate with it. It should be called
       after all operations using a cipher are complete so sensitive informa-
       tion does not remain in memory.

       EVP_EncryptInit(), EVP_DecryptInit() and EVP_CipherInit() behave in a
       similar way to EVP_EncryptInit_ex(), EVP_DecryptInit_ex and
       EVP_CipherInit_ex() except the ctx parameter does not need to be ini-
       tialized and they always use the default cipher implementation.

       EVP_EncryptFinal(), EVP_DecryptFinal() and EVP_CipherFinal() are iden-
       tical to EVP_EncryptFinal_ex(), EVP_DecryptFinal_ex() and EVP_CipherFi-
       nal_ex(). In previous releases they also cleaned up the ctx, but this
       is no longer done and EVP_CIPHER_CTX_clean() must be called to free any
       context resources.

       EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj()
       return an EVP_CIPHER structure when passed a cipher name, a NID or an
       ASN1_OBJECT structure.

       EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return the NID of a cipher
       when passed an EVP_CIPHER or EVP_CIPHER_CTX structure.  The actual NID
       value is an internal value which may not have a corresponding OBJECT
       IDENTIFIER.

       EVP_CIPHER_CTX_set_padding() enables or disables padding. By default
       encryption operations are padded using standard block padding and the
       padding is checked and removed when decrypting. If the pad parameter is
       zero then no padding is performed, the total amount of data encrypted
       or decrypted must then be a multiple of the block size or an error will
       occur.

       EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key
       length of a cipher when passed an EVP_CIPHER or EVP_CIPHER_CTX struc-
       ture. The constant EVP_MAX_KEY_LENGTH is the maximum key length for all
       ciphers. Note: although EVP_CIPHER_key_length() is fixed for a given
       cipher, the value of EVP_CIPHER_CTX_key_length() may be different for
       variable key length ciphers.

       EVP_CIPHER_CTX_set_key_length() sets the key length of the cipher ctx.
       If the cipher is a fixed length cipher then attempting to set the key
       length to any value other than the fixed value is an error.

       EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV
       length of a cipher when passed an EVP_CIPHER or EVP_CIPHER_CTX.  It
       will return zero if the cipher does not use an IV.  The constant
       EVP_MAX_IV_LENGTH is the maximum IV length for all ciphers.

       EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the
       block size of a cipher when passed an EVP_CIPHER or EVP_CIPHER_CTX
       structure. The constant EVP_MAX_IV_LENGTH is also the maximum block
       length for all ciphers.

       EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the type of the
       passed cipher or context. This "type" is the actual NID of the cipher
       OBJECT IDENTIFIER as such it ignores the cipher parameters and 40 bit
       RC2 and 128 bit RC2 have the same NID. If the cipher does not have an
       object identifier or does not have ASN1 support this function will
       return NID_undef.

       EVP_CIPHER_CTX_cipher() returns the EVP_CIPHER structure when passed an
       EVP_CIPHER_CTX structure.

       EVP_CIPHER_mode() and EVP_CIPHER_CTX_mode() return the block cipher
       mode: EVP_CIPH_ECB_MODE, EVP_CIPH_CBC_MODE, EVP_CIPH_CFB_MODE or
       EVP_CIPH_OFB_MODE. If the cipher is a stream cipher then
       EVP_CIPH_STREAM_CIPHER is returned.

       EVP_CIPHER_param_to_asn1() sets the AlgorithmIdentifier "parameter"
       based on the passed cipher. This will typically include any parameters
       and an IV. The cipher IV (if any) must be set when this call is made.
       This call should be made before the cipher is actually "used" (before
       any EVP_EncryptUpdate(), EVP_DecryptUpdate() calls for example). This
       function may fail if the cipher does not have any ASN1 support.

       EVP_CIPHER_asn1_to_param() sets the cipher parameters based on an ASN1
       AlgorithmIdentifier "parameter". The precise effect depends on the
       cipher In the case of RC2, for example, it will set the IV and effec-
       tive key length.  This function should be called after the base cipher
       type is set but before the key is set. For example EVP_CipherInit()
       will be called with the IV and key set to NULL,
       EVP_CIPHER_asn1_to_param() will be called and finally EVP_CipherInit()
       again with all parameters except the key set to NULL. It is possible
       for this function to fail if the cipher does not have any ASN1 support
       or the parameters cannot be set (for example the RC2 effective key
       length is not supported.

       EVP_CIPHER_CTX_ctrl() allows various cipher specific parameters to be
       determined and set.


RETURN VALUES

       EVP_EncryptInit_ex(), EVP_EncryptUpdate() and EVP_EncryptFinal_ex()
       return 1 for success and 0 for failure.

       EVP_DecryptInit_ex() and EVP_DecryptUpdate() return 1 for success and 0
       for failure.  EVP_DecryptFinal_ex() returns 0 if the decrypt failed or
       1 for success.

       EVP_CipherInit_ex() and EVP_CipherUpdate() return 1 for success and 0
       for failure.  EVP_CipherFinal_ex() returns 0 for a decryption failure
       or 1 for success.

       EVP_CIPHER_CTX_cleanup() returns 1 for success and 0 for failure.

       EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj()
       return an EVP_CIPHER structure or NULL on error.

       EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return a NID.

       EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the
       block size.

       EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key
       length.

       EVP_CIPHER_CTX_set_padding() always returns 1.

       EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV
       length or zero if the cipher does not use an IV.

       EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the NID of the
       cipher's OBJECT IDENTIFIER or NID_undef if it has no defined OBJECT
       IDENTIFIER.

       EVP_CIPHER_CTX_cipher() returns an EVP_CIPHER structure.

       EVP_CIPHER_param_to_asn1() and EVP_CIPHER_asn1_to_param() return 1 for
       success or zero for failure.


CIPHER LISTING

       All algorithms have a fixed key length unless otherwise stated.

       EVP_enc_null()
           Null cipher: does nothing.

       EVP_des_cbc(void), EVP_des_ecb(void), EVP_des_cfb(void),
       EVP_des_ofb(void)
           DES in CBC, ECB, CFB and OFB modes respectively.

       EVP_des_ede_cbc(void), EVP_des_ede(), EVP_des_ede_ofb(void),
       EVP_des_ede_cfb(void)
           Two key triple DES in CBC, ECB, CFB and OFB modes respectively.

       EVP_des_ede3_cbc(void), EVP_des_ede3(), EVP_des_ede3_ofb(void),
       EVP_des_ede3_cfb(void)
           Three key triple DES in CBC, ECB, CFB and OFB modes respectively.

       EVP_desx_cbc(void)
           DESX algorithm in CBC mode.

       EVP_rc4(void)
           RC4 stream cipher. This is a variable key length cipher with
           default key length 128 bits.

       EVP_rc4_40(void)
           RC4 stream cipher with 40 bit key length. This is obsolete and new
           code should use EVP_rc4() and the EVP_CIPHER_CTX_set_key_length()
           function.

       EVP_idea_cbc() EVP_idea_ecb(void), EVP_idea_cfb(void),
       EVP_idea_ofb(void), EVP_idea_cbc(void)
           IDEA encryption algorithm in CBC, ECB, CFB and OFB modes respec-
           tively.

       EVP_rc2_cbc(void), EVP_rc2_ecb(void), EVP_rc2_cfb(void),
       EVP_rc2_ofb(void)
           RC2 encryption algorithm in CBC, ECB, CFB and OFB modes respec-
           tively. This is a variable key length cipher with an additional
           parameter called "effective key bits" or "effective key length".
           By default both are set to 128 bits.

       EVP_rc2_40_cbc(void), EVP_rc2_64_cbc(void)
           RC2 algorithm in CBC mode with a default key length and effective
           key length of 40 and 64 bits.  These are obsolete and new code
           should use EVP_rc2_cbc(), EVP_CIPHER_CTX_set_key_length() and
           EVP_CIPHER_CTX_ctrl() to set the key length and effective key
           length.

       EVP_bf_cbc(void), EVP_bf_ecb(void), EVP_bf_cfb(void), EVP_bf_ofb(void);
           Blowfish encryption algorithm in CBC, ECB, CFB and OFB modes
           respectively. This is a variable key length cipher.

       EVP_cast5_cbc(void), EVP_cast5_ecb(void), EVP_cast5_cfb(void),
       EVP_cast5_ofb(void)
           CAST encryption algorithm in CBC, ECB, CFB and OFB modes respec-
           tively. This is a variable key length cipher.

       EVP_rc5_32_12_16_cbc(void), EVP_rc5_32_12_16_ecb(void),
       EVP_rc5_32_12_16_cfb(void), EVP_rc5_32_12_16_ofb(void)
           RC5 encryption algorithm in CBC, ECB, CFB and OFB modes respec-
           tively. This is a variable key length cipher with an additional
           "number of rounds" parameter. By default the key length is set to
           128 bits and 12 rounds.

       EVP_aes_128_gcm(void), EVP_aes_192_gcm(void), EVP_aes_256_gcm(void)
           AES Galois Counter Mode (GCM) for 128, 192 and 256 bit keys respec-
           tively.  These ciphers require additional control operations to
           function correctly: see "GCM mode" section below for details.

       EVP_aes_128_ccm(void), EVP_aes_192_ccm(void), EVP_aes_256_ccm(void)
           AES Counter with CBC-MAC Mode (CCM) for 128, 192 and 256 bit keys
           respectively.  These ciphers require additional control operations
           to function correctly: see CCM mode section below for details.


GCM Mode

       For GCM mode ciphers the behaviour of the EVP interface is subtly
       altered and several GCM specific ctrl operations are supported.

       To specify any additional authenticated data (AAD) a call to
       EVP_CipherUpdate(), EVP_EncryptUpdate() or EVP_DecryptUpdate() should
       be made with the output parameter out set to NULL.

       When decrypting the return value of EVP_DecryptFinal() or EVP_CipherFi-
       nal() indicates if the operation was successful. If it does not indi-
       cate success the authentication operation has failed and any output
       data MUST NOT be used as it is corrupted.

       The following ctrls are supported in GCM mode:

        EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, ivlen, NULL);

       Sets the GCM IV length: this call can only be made before specifying an
       IV. If not called a default IV length is used (96 bits for AES).

        EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, taglen, tag);

       Writes taglen bytes of the tag value to the buffer indicated by tag.
       This call can only be made when encrypting data and after all data has
       been processed (e.g. after an EVP_EncryptFinal() call).

        EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, taglen, tag);

       Sets the expected tag to taglen bytes from tag. This call is only legal
       when decrypting data.


CCM Mode

       The behaviour of CCM mode ciphers is similar to CCM mode but with a few
       additional requirements and different ctrl values.

       Like GCM mode any additional authenticated data (AAD) is passed by
       calling EVP_CipherUpdate(), EVP_EncryptUpdate() or EVP_DecryptUpdate()
       with the output parameter out set to NULL. Additionally the total
       plaintext or ciphertext length MUST be passed to EVP_CipherUpdate(),
       EVP_EncryptUpdate() or EVP_DecryptUpdate() with the output and input
       parameters (in and out) set to NULL and the length passed in the inl
       parameter.

       The following ctrls are supported in CCM mode:

        EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_TAG, taglen, tag);

       This call is made to set the expected CCM tag value when decrypting or
       the length of the tag (with the tag parameter set to NULL) when
       encrypting.  The tag length is often referred to as M. If not set a
       default value is used (12 for AES).

        EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_L, ivlen, NULL);

       Sets the CCM L value. If not set a default is used (8 for AES).

        EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_IVLEN, ivlen, NULL);

       Sets the CCM nonce (IV) length: this call can only be made before spec-
       ifying an nonce value. The nonce length is given by 15 - L so it is 7
       by default for AES.


NOTES

       Where possible the EVP interface to symmetric ciphers should be used in
       preference to the low level interfaces. This is because the code then
       becomes transparent to the cipher used and much more flexible. Addi-
       tionally, the EVP interface will ensure the use of platform specific
       cryptographic acceleration such as AES-NI (the low level interfaces do
       not provide the guarantee).

       PKCS padding works by adding n padding bytes of value n to make the
       total length of the encrypted data a multiple of the block size. Pad-
       ding is always added so if the data is already a multiple of the block
       size n will equal the block size. For example if the block size is 8
       and 11 bytes are to be encrypted then 5 padding bytes of value 5 will
       be added.

       When decrypting the final block is checked to see if it has the correct
       form.

       Although the decryption operation can produce an error if padding is
       enabled, it is not a strong test that the input data or key is correct.
       A random block has better than 1 in 256 chance of being of the correct
       format and problems with the input data earlier on will not produce a
       final decrypt error.

       If padding is disabled then the decryption operation will always suc-
       ceed if the total amount of data decrypted is a multiple of the block
       size.

       The functions EVP_EncryptInit(), EVP_EncryptFinal(), EVP_DecryptInit(),
       EVP_CipherInit() and EVP_CipherFinal() are obsolete but are retained
       for compatibility with existing code. New code should use EVP_Encryp-
       tInit_ex(), EVP_EncryptFinal_ex(), EVP_DecryptInit_ex(), EVP_DecryptFi-
       nal_ex(), EVP_CipherInit_ex() and EVP_CipherFinal_ex() because they can
       reuse an existing context without allocating and freeing it up on each
       call.


BUGS

       For RC5 the number of rounds can currently only be set to 8, 12 or 16.
       This is a limitation of the current RC5 code rather than the EVP inter-
       face.

       EVP_MAX_KEY_LENGTH and EVP_MAX_IV_LENGTH only refer to the internal
       ciphers with default key lengths. If custom ciphers exceed these values
       the results are unpredictable. This is because it has become standard
       practice to define a generic key as a fixed unsigned char array con-
       taining EVP_MAX_KEY_LENGTH bytes.

       The ASN1 code is incomplete (and sometimes inaccurate) it has only been
       tested for certain common S/MIME ciphers (RC2, DES, triple DES) in CBC
       mode.


EXAMPLES

       Encrypt a string using IDEA:

        int do_crypt(char *outfile)
               {
               unsigned char outbuf[1024];
               int outlen, tmplen;
               /* Bogus key and IV: we'd normally set these from
                * another source.
                */
               unsigned char key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
               unsigned char iv[] = {1,2,3,4,5,6,7,8};
               char intext[] = "Some Crypto Text";
               EVP_CIPHER_CTX ctx;
               FILE *out;

               EVP_CIPHER_CTX_init(&ctx);
               EVP_EncryptInit_ex(&ctx, EVP_idea_cbc(), NULL, key, iv);

               if(!EVP_EncryptUpdate(&ctx, outbuf, &outlen, intext, strlen(intext)))
                       {
                       /* Error */
                       return 0;
                       }
               /* Buffer passed to EVP_EncryptFinal() must be after data just
                * encrypted to avoid overwriting it.
                */
               if(!EVP_EncryptFinal_ex(&ctx, outbuf + outlen, &tmplen))
                       {
                       /* Error */
                       return 0;
                       }
               outlen += tmplen;
               EVP_CIPHER_CTX_cleanup(&ctx);
               /* Need binary mode for fopen because encrypted data is
                * binary data. Also cannot use strlen() on it because
                * it wont be null terminated and may contain embedded
                * nulls.
                */
               out = fopen(outfile, "wb");
               fwrite(outbuf, 1, outlen, out);
               fclose(out);
               return 1;
               }

       The ciphertext from the above example can be decrypted using the
       openssl utility with the command line (shown on two lines for clarity):

        openssl idea -d <filename
                 -K 000102030405060708090A0B0C0D0E0F -iv 0102030405060708

       General encryption and decryption function example using FILE I/O and
       AES128 with a 128-bit key:

        int do_crypt(FILE *in, FILE *out, int do_encrypt)
               {
               /* Allow enough space in output buffer for additional block */
               unsigned char inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH];
               int inlen, outlen;
               EVP_CIPHER_CTX ctx;
               /* Bogus key and IV: we'd normally set these from
                * another source.
                */
               unsigned char key[] = "0123456789abcdeF";
               unsigned char iv[] = "1234567887654321";

               /* Don't set key or IV right away; we want to check lengths */
               EVP_CIPHER_CTX_init(&ctx);
               EVP_CipherInit_ex(&ctx, EVP_aes_128_cbc(), NULL, NULL, NULL,
                       do_encrypt);
               OPENSSL_assert(EVP_CIPHER_CTX_key_length(&ctx) == 16);
               OPENSSL_assert(EVP_CIPHER_CTX_iv_length(&ctx) == 16);

               /* Now we can set key and IV */
               EVP_CipherInit_ex(&ctx, NULL, NULL, key, iv, do_encrypt);

               for(;;)
                       {
                       inlen = fread(inbuf, 1, 1024, in);
                       if(inlen <= 0) break;
                       if(!EVP_CipherUpdate(&ctx, outbuf, &outlen, inbuf, inlen))
                               {
                               /* Error */
                               EVP_CIPHER_CTX_cleanup(&ctx);
                               return 0;
                               }
                       fwrite(outbuf, 1, outlen, out);
                       }
               if(!EVP_CipherFinal_ex(&ctx, outbuf, &outlen))
                       {
                       /* Error */
                       EVP_CIPHER_CTX_cleanup(&ctx);
                       return 0;
                       }
               fwrite(outbuf, 1, outlen, out);

               EVP_CIPHER_CTX_cleanup(&ctx);
               return 1;
               }


SEE ALSO

       evp(3)


HISTORY

       EVP_CIPHER_CTX_init(), EVP_EncryptInit_ex(), EVP_EncryptFinal_ex(),
       EVP_DecryptInit_ex(), EVP_DecryptFinal_ex(), EVP_CipherInit_ex(),
       EVP_CipherFinal_ex() and EVP_CIPHER_CTX_set_padding() appeared in
       OpenSSL 0.9.7.

       IDEA appeared in OpenSSL 0.9.7 but was often disabled due to patent
       concerns; the last patents expired in 2012.

1.0.2t                            2019-09-10                EVP_EncryptInit(3)

Man(1) output converted with man2html